Eficiencia del diagnóstico genómico en el Hospital de Niños Ricardo Gutiérrez
Efficiency of genomic diagnosis at the Hospital de Niños Ricardo Gutiérrez
Keywords:
Enfermedades Genéticas Congénitas, Secuenciación de Nueva Generación (NGS), Exoma, Hibridación Genómica Comparativa empleando array (array-CGH), Variaciones en el Número de Copias de ADN (CNVs)Abstract
Las técnicas de secuenciación de nueva generación (NGS) y de hibridación genómica comparativa empleando array (array-CGH) permiten el diagnóstico etiopatogénico de diversas enfermedades genéticas de la infancia con un rédito diagnóstico variable (15-80%) dependiendo del tipo de patología y de la estrategia de estudio genómico que se emplee. Objetivo: Evaluar la eficiencia y el impacto clínico del proceso de diagnóstico genómico en el Hospital de Niños Ricardo Gutiérrez. Para la implementación del proceso se conformó un equipo interdisciplinario de profesionales. Se incluyeron niños con sospecha de enfermedades genéticas. Se utilizaron dos técnicas genómicas: NGS para detectar variantes de secuencia génica y array-CGH para variantes en el número de copias del genoma. Las variantes se clasificaron según su potencial patogenicidad. Resultados: Se estudiaron 773 casos. La ED de NGS fue 46±4% y de array-CGH fue 17±4%. El 39% de las variantes génicas no habían sido reportadas previamente. El tiempo de odisea diagnóstica fue de 6,0 años (2,2 a 11,9 años). Conclusiones: Se logró implementar el proceso de diagnóstico genómico en el Hospital alcanzando resultados de ED similares a otros centros pediátricos en el mundo que estudian enfermedades poco frecuentes y establecer nuevas estrategias para conocer su base genética.
References
Argentina. Ministerio de Salud de la Nación. Dirección de Estadísticas e Información de la Salud. Indicadores Básicos de Salud; 2023. [Consulta: 15 de enero de 2025] Disponible en: https://www.argentina.gob.ar/sites/default/files/indicadores-basicos_2023-web.pdf .
Eurodis/European Organization for Rare Diseases. Rare Diseases: Understanding this Public Health Priority; 2005. [Consulta: 15 de enero de 2025]. Disponible en: https://www.eurordis.org/wp-content/uploads/2009/12/princeps_document-EN.pdf
De Sena A, Escati Peñaloza L, et al. Estudio ENSERIo LATAM. Capítulo Argentina. En: FADEPOF-Federación Argentina de Enfermedades Poco Frecuentes: Totana: ALIBER- Alianza Iberoamericana de Enfermedades Raras o Poco Frecuentes. Ciudad Autónoma de Buenos Aires, 2022. Libro digital. PDF.
OMIM® An Online Catalog of Human Genes and Genetic Disorders. OMIM Entry Statistics; 2025. [Consulta: 15 de enero de 2025]. Disponible en: https://www.omim.org/statistics/entry.
Baynam G, Pachter N, McKenzie F, et al. The rare and undiagnosed diseases diagnostic service - application of massively parallel sequencing in a state-wide clinical service. Orphanet J Rare Dis. 2016; 11(1):77. Citado en: PubMed; PMID: 27287197.
Wright CF, Fitz Patrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet. 2018; 19(5):253-68. Citado en: PubMed; PMID: 29456250.
Köhler S, Vasilevsky NA, Engelstad M, et al. The Human Phenotype Ontology. Nucleic Acids Res. 2017; 45(D1): D865-76. Citado en: PubMed; PMID: 27899602.
REDCap. Base de Datos del proyecto Genómica Clínica de Enfermedades Pediátricas. Disponible en https://fipec.org.ar/redcap/redcap_v8.11.5/index.php?pid=34
Rehm HL, Berg JS, Brooks LD, et al. ClinGen--the Clinical Genome Resource. N Engl J Med. 2015; 372(23):2235-42. Citado en: PubMed; PMID: 26014595.
Martin AR, Williams E, Foulger RE, et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet. 2019; 51(11):1560-5. Citado en: PubMed; PMID: 31676867.
Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK1116/
Broad Institute good practices. Genome Analysis Toolkit; 2025. [Consulta: 15 de enero de 2025]. Disponible en: https://gatk.broadinstitute.org/hc/en-us.
DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491-8.
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38(16):e164.
SnpEff [Internet]. Disponible en: https://pcingola.github.io/SnpEff/
Fowler A. DECoN: A Detection and Visualization Tool for Exonic Copy Number Variants. Methods Mol Biol. 2022; 2493:77-88.
Bitgenia. B-platform; 2025. [Consulta: 15 de enero de 2025]. Disponible en: https://bplatform.bitgenia.com/login
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5):405-24. Citado en: PubMed; PMID: 25741868.
ClinGen. Clinical Genome Resources. Variant Interpretation Working Group recommendations. [Consulta: 15 de enero de 2025]. Disponible en: https://www.clinicalgenome.org/working-groups/sequence-variant-interpretation
Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020; 22(2):245-57. Citado en: PubMed; PMID: 31690835.
MacDonald JR, Ziman R, Yuen RKC, et al. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014; 42(Database issue):D986-992. Citado en: PubMed; PMID: 24174537
Firth HV, Richards SM, Bevan AP, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet. 2009; 84(4):524-33. Citado en: PubMed; PMID: 19344873.
Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014; 42(Database issue):D980-985. Citado en: PubMed; PMID: 24234437.
Reuter CM, Kohler JN, Bonner D, et al. Yield of whole exome sequencing in undiagnosed patients facing insurance coverage barriers to genetic testing. J Genet Couns. 2019; 28(6):1107-1118. Citado en PubMed; PMID: 31478310.
Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013; 369(16):1502-11. Citado en PubMed; PMID: 24088041
Marinakis NM, Svingou M, Veltra D, et al. Phenotype-driven variant filtration strategy in exome sequencing toward a high diagnostic yield and identification of 85 novel variants in 400 patients with rare Mendelian disorders. Am J Med Genet A. 2021; 185(8):2561-71. Citado en: PubMed; PMID: 34008892.
Espeche LD, Solari AP, Mori MÁ, et al. Implementation of chromosomal microarrays in a cohort of patients with intellectual disability at the Argentinean public health system. Mol Biol Rep. 2020; 47(9):6863-6878.
Rodríguez-Revenga L, Vallespín E, Madrigal I, et al. A parallel study of different array-CGH platforms in a set of Spanish patients with developmental delay and intellectual disability. Gene. 2013; 521(1):82-6.
Sawyer SL, Hartley T, Dyment DA, et al. Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin Genet. 2016; 89(3):275-84. Citado en: PubMed; PMID: 26283276.
Seaby EG, Pengelly RJ, Ennis S. Exome sequencing explained: a practical guide to its clinical application. Brief Funct Genomics. 2016; 15(5):374-84. Citado en: PubMed; PMID: 26654982.
Jalkh N, Corbani S, Haidar Z, et al. The added value of WES reanalysis in the field of genetic diagnosis: lessons learned from 200 exomes in the Lebanese population. BMC Med Genomics. 2019; 12(1):11. Citado en: PubMed; PMID: 30665423.
Shoukier M, Klein N, Auber B, et al. Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet. 2013; 83(1):53-65. Citado en: PubMed; PMID: 22283495.
Sagoo GS, Butterworth AS, Sanderson S, et al. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects. Genet Med. 2009; 11(3):139-46. Citado en: PubMed; PMID: 19367186.
Ho KS, Wassman ER, Baxter AL, et al. Chromosomal Microarray Analysis of Consecutive Individuals with Autism Spectrum Disorders Using an Ultra-High Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders. Int J Mol Sci. 2016; 17(12):2070. Citado en: PubMed; PMID: 27941670.
Alotibi RS, Sannan NS, AlEissa M, et al. The diagnostic yield of CGH and WES in neurodevelopmental disorders. Front Pediatr. 2023; 11:1133789. Citado en: PubMed; PMID: 36937954.
Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010; 86(5):749-64. Citado en: PubMed; PMID: 20466091.
Posey JE, Harel T, Liu P, et al. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N Engl J Med. 2017; 376(1):21-31. Citado en: PubMed; PMID: 27959697.
Tan TY, Dillon OJ, Stark Z, et al. Diagnostic Impact and Cost-effectiveness of Whole-Exome Sequencing for Ambulant Children With Suspected Monogenic Conditions. JAMA Pediatr. 2017; 171(9):855-62. Citado en: PubMed; PMID: 28759686.
Saglia C, Bracciamà V, Trotta L, et al. Relevance of next generation sequencing (NGS) data re-analysis in the diagnosis of monogenic diseases leading to organ failure. BMC Med Genomics. 2023; 16(1):303. Citado en:PubMed; PMID: 38012624.
Bartolomaeus T, Hentschel J, Jamra RA, et al. Re-evaluation and re-analysis of 152 research exomes five years after the initial report reveals clinically relevant changes in 18. Eur J Hum Genet. 2023; 31(10):1154-1164. Citado en: PubMed; PMID: 37460657.
Yohe S, Thyagarajan B. Review of Clinical Next-Generation Sequencing. Arch Pathol Lab Med. 2017; 141(11):1544-1557. Citado en: PubMed; PMID: 28782984.
Wakeling EL, Brioude F, Lokulo-Sodipe O, et al. Diagnosis and management of Silver–Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017; 13(2):105–124.
Beygo J, Buiting K, Ramsden SC, et al. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader–Willi and Angelman syndromes. Eur J Hum Genet. 2019; 27(9):1326–1340.
Palmer EE, Sachdev R, Macintosh R, et al. Diagnostic Yield of Whole Genome Sequencing After Nondiagnostic Exome Sequencing or Gene Panel in Developmental and Epileptic Encephalopathies. Neurology. 2021; 96(13):e1770-e1782. Citado en: PubMed; PMID: 33568551.
Mantere T, Kersten S, Hoischen A. Long-Read Sequencing Emerging in Medical Genetics. Front Genet. 2019; 10:426. Citado en: PubMed; PMID: 31134132.
Sanchis-Juan A, Stephens J, French CE, et al. Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 2018; 10(1):95.
Chen Y, Li D, Yin J, et al. Diagnostic yield of next-generation sequencing in suspect primary immunodeficiencies diseases: a systematic review and meta-analysis. Clin Exp Med. 2024; 24(1):131. Citado en PubMed; PMID: 38890201.
Lemke JR. High-Throughput Sequencing as First-Tier Diagnostics in Congenital and Early-Onset Disorders. JAMA Pediatr. 2017; 171(9):833-835. Citado en: PubMed; PMID: 28759672.
de Oliveira BM, Bernardi FA, Baiochi JF, et al. Epidemiological characterization of rare diseases in Brazil: A retrospective study of the Brazilian Rare Diseases Network. Orphanet J Rare Dis. 2024; 19(1):405. Citado en: PubMed; PMID: 39478612.
Jimenez-Sanchez G, Silva-Zolezzi I, Hidalgo A, et al. Genomic medicine in Mexico: initial steps and the road ahead. Genome Res. 2008; 18(8):1191-8. Citado en: PubMed; PMID: 18676818.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Revista del Hospital de Niños de Buenos Aires

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Todo el contenido que se publica en la Revista del Hospital de Niños de Buenos Aires está bajo una Licencia Creative Commons Atribución – No Comercial – Sin Obra Derivada 4.0 Internacional (CC-BY-NC-ND 4.0)